θ

·>

QGP

QGP

 10^{3}

B-jet Physics: Energy Loss

Semi-leptonic decay requirements: Electron identification at large p_T Narrow primary electron DCA distribution

- (1) Semi-leptonic decay
- (2) Multiple Large DCA tracks
- (3) Secondary Vertex Mass

Semi-leptonic decay requirements: Electron identification at large p_T Narrow primary electron DCA distribution

Downside: Large reduction in B-jets if only the semi-leptonic decay channel is used

Unclear if this is a viable route to b-jets

- (1) Semi-leptonic decay
- (2) Multiple Large DCA tracks
- (3) Secondary Vertex Mass

Track Counting requirements:

Large single particle reconstruction efficiency, $\sim \varepsilon^N$

Narrow primary hadron DCA distribution (<70um)

- (1) Semi-leptonic decay
- (2) Multiple Large DCA tracks
- (3) Secondary Vertex Mass

Secondary Vertex requirements:

Large single particle reconstruction efficiency, $\sim e^2$

Individual track position resolution

- (1) Semi-leptonic decay
- (2) Multiple Large DCA tracks
- (3) Secondary Vertex Mass

CMS b-jet Performance

≈45% Efficiency and ≈35% Purity in the CMS b-jet spectrum in Pb+Pb

comparable to that achievable with 2- or 3-track
TrackCounting cuts